通过学习占用和公制地图来解决开放世界越野导航任务的几何方法,提供良好的泛化,但在违反他们的假设(例如,高草)的户外环境中可能是脆弱的。基于学习的方法可以直接从原始观察中学习无碰撞行为,但难以与标准的基于几何的管道集成。这创造了一个不幸的冲突 - 要么使用学习,要么丢失很好的几何导航组件,要么不使用它,或者不使用它,支持广泛的手动调整几何的成本图。在这项工作中,我们通过以一种方式设计学习和非学习的组件来拒绝这种二分法,使得它们可以以自我监督的方式有效地组合。这两个组件都有助于规划标准:学习组件作为奖励有助于预测的可遍历,而几何组件会有助于障碍成本信息。我们实例化并相对评价我们的系统在分销和分发的外部环境中,表明这种方法继承了来自学习和几何成分的互补收益,并显着优于其中任何一个。我们的结果视频在https://sites.google.com/view/hybrid -imitative-planning托管
translated by 谷歌翻译
We introduce a novel framework to track multiple objects in overhead camera videos for airport checkpoint security scenarios where targets correspond to passengers and their baggage items. We propose a Self-Supervised Learning (SSL) technique to provide the model information about instance segmentation uncertainty from overhead images. Our SSL approach improves object detection by employing a test-time data augmentation and a regression-based, rotation-invariant pseudo-label refinement technique. Our pseudo-label generation method provides multiple geometrically-transformed images as inputs to a Convolutional Neural Network (CNN), regresses the augmented detections generated by the network to reduce localization errors, and then clusters them using the mean-shift algorithm. The self-supervised detector model is used in a single-camera tracking algorithm to generate temporal identifiers for the targets. Our method also incorporates a multi-view trajectory association mechanism to maintain consistent temporal identifiers as passengers travel across camera views. An evaluation of detection, tracking, and association performances on videos obtained from multiple overhead cameras in a realistic airport checkpoint environment demonstrates the effectiveness of the proposed approach. Our results show that self-supervision improves object detection accuracy by up to $42\%$ without increasing the inference time of the model. Our multi-camera association method achieves up to $89\%$ multi-object tracking accuracy with an average computation time of less than $15$ ms.
translated by 谷歌翻译
Our aim is to build autonomous agents that can solve tasks in environments like Minecraft. To do so, we used an imitation learning-based approach. We formulate our control problem as a search problem over a dataset of experts' demonstrations, where the agent copies actions from a similar demonstration trajectory of image-action pairs. We perform a proximity search over the BASALT MineRL-dataset in the latent representation of a Video PreTraining model. The agent copies the actions from the expert trajectory as long as the distance between the state representations of the agent and the selected expert trajectory from the dataset do not diverge. Then the proximity search is repeated. Our approach can effectively recover meaningful demonstration trajectories and show human-like behavior of an agent in the Minecraft environment.
translated by 谷歌翻译
The availability of frequent and cost-free satellite images is in growing demand in the research world. Such satellite constellations as Landsat 8 and Sentinel-2 provide a massive amount of valuable data daily. However, the discrepancy in the sensors' characteristics of these satellites makes it senseless to use a segmentation model trained on either dataset and applied to another, which is why domain adaptation techniques have recently become an active research area in remote sensing. In this paper, an experiment of domain adaptation through style-transferring is conducted using the HRSemI2I model to narrow the sensor discrepancy between Landsat 8 and Sentinel-2. This paper's main contribution is analyzing the expediency of that approach by comparing the results of segmentation using domain-adapted images with those without adaptation. The HRSemI2I model, adjusted to work with 6-band imagery, shows significant intersection-over-union performance improvement for both mean and per class metrics. A second contribution is providing different schemes of generalization between two label schemes - NALCMS 2015 and CORINE. The first scheme is standardization through higher-level land cover classes, and the second is through harmonization validation in the field.
translated by 谷歌翻译
When a human communicates with a machine using natural language on the web and online, how can it understand the human's intention and semantic context of their talk? This is an important AI task as it enables the machine to construct a sensible answer or perform a useful action for the human. Meaning is represented at the sentence level, identification of which is known as intent detection, and at the word level, a labelling task called slot filling. This dual-level joint task requires innovative thinking about natural language and deep learning network design, and as a result, many approaches and models have been proposed and applied. This tutorial will discuss how the joint task is set up and introduce Spoken Language Understanding/Natural Language Understanding (SLU/NLU) with Deep Learning techniques. We will cover the datasets, experiments and metrics used in the field. We will describe how the machine uses the latest NLP and Deep Learning techniques to address the joint task, including recurrent and attention-based Transformer networks and pre-trained models (e.g. BERT). We will then look in detail at a network that allows the two levels of the task, intent classification and slot filling, to interact to boost performance explicitly. We will do a code demonstration of a Python notebook for this model and attendees will have an opportunity to watch coding demo tasks on this joint NLU to further their understanding.
translated by 谷歌翻译
Recently, there has been increasing interest in synthesizing data to improve downstream text-to-SQL tasks. In this paper, we first examined the existing synthesized datasets and discovered that state-of-the-art text-to-SQL algorithms did not further improve on popular benchmarks when trained with augmented synthetic data. We observed two shortcomings: illogical synthetic SQL queries from independent column sampling and arbitrary table joins. To address these issues, we propose a novel synthesis framework that incorporates key relationships from schema, imposes strong typing, and conducts schema-distance-weighted column sampling. We also adopt an intermediate representation (IR) for the SQL-to-text task to further improve the quality of the generated natural language questions. When existing powerful semantic parsers are pre-finetuned on our high-quality synthesized data, our experiments show that these models have significant accuracy boosts on popular benchmarks, including new state-of-the-art performance on Spider.
translated by 谷歌翻译
Datacenter operators ensure fair and regular server maintenance by using automated processes to schedule maintenance jobs to complete within a strict time budget. Automating this scheduling problem is challenging because maintenance job duration varies based on both job type and hardware. While it is tempting to use prior machine learning techniques for predicting job duration, we find that the structure of the maintenance job scheduling problem creates a unique challenge. In particular, we show that prior machine learning methods that produce the lowest error predictions do not produce the best scheduling outcomes due to asymmetric costs. Specifically, underpredicting maintenance job duration has results in more servers being taken offline and longer server downtime than overpredicting maintenance job duration. The system cost of underprediction is much larger than that of overprediction. We present Acela, a machine learning system for predicting maintenance job duration, which uses quantile regression to bias duration predictions toward overprediction. We integrate Acela into a maintenance job scheduler and evaluate it on datasets from large-scale, production datacenters. Compared to machine learning based predictors from prior work, Acela reduces the number of servers that are taken offline by 1.87-4.28X, and reduces the server offline time by 1.40-2.80X.
translated by 谷歌翻译
We discuss pattern languages for closed pattern mining and learning of interval data and distributional data. We first introduce pattern languages relying on pairs of intersection-based constraints or pairs of inclusion based constraints, or both, applied to intervals. We discuss the encoding of such interval patterns as itemsets thus allowing to use closed itemsets mining and formal concept analysis programs. We experiment these languages on clustering and supervised learning tasks. Then we show how to extend the approach to address distributional data.
translated by 谷歌翻译
Reinforcement-learning agents seek to maximize a reward signal through environmental interactions. As humans, our contribution to the learning process is through designing the reward function. Like programmers, we have a behavior in mind and have to translate it into a formal specification, namely rewards. In this work, we consider the reward-design problem in tasks formulated as reaching desirable states and avoiding undesirable states. To start, we propose a strict partial ordering of the policy space. We prefer policies that reach the good states faster and with higher probability while avoiding the bad states longer. Next, we propose an environment-independent tiered reward structure and show it is guaranteed to induce policies that are Pareto-optimal according to our preference relation. Finally, we empirically evaluate tiered reward functions on several environments and show they induce desired behavior and lead to fast learning.
translated by 谷歌翻译
Empirical risk minimization (ERM) and distributionally robust optimization (DRO) are popular approaches for solving stochastic optimization problems that appear in operations management and machine learning. Existing generalization error bounds for these methods depend on either the complexity of the cost function or dimension of the uncertain parameters; consequently, the performance of these methods is poor for high-dimensional problems with objective functions under high complexity. We propose a simple approach in which the distribution of uncertain parameters is approximated using a parametric family of distributions. This mitigates both sources of complexity; however, it introduces a model misspecification error. We show that this new source of error can be controlled by suitable DRO formulations. Our proposed parametric DRO approach has significantly improved generalization bounds over existing ERM / DRO methods and parametric ERM for a wide variety of settings. Our method is particularly effective under distribution shifts. We also illustrate the superior performance of our approach on both synthetic and real-data portfolio optimization and regression tasks.
translated by 谷歌翻译